Platelet Function and Biology

Jeju National Univeristy Hospital Seung-Jae Joo, MD, PhD

Hemostatic Plug Formation

Adapted from: Ferguson JJ. *The Physiology of Normal Platelet Function*. In: Ferguson JJ, Chronos N, Harrington RA (Eds). *Antiplatelet Therapy in Clinical Practice*. London: Martin Dunitz; 2000: pp.15–35.

Platelet Adhesion, Activation and Aggregation

Normal platelets in flowing blood

Platelets adhering to damaged endothelium and undergoing activation Aggregation of platelets into a thrombus

NO, PGI₂, Ectonucleotidase

Adapted from: Ferguson JJ. *The Physiology of Normal Platelet Function*. In: Ferguson JJ, Chronos N, Harrington RA (Eds). *Antiplatelet Therapy in Clinical Practice*. London: Martin Dunitz; 2000: pp.15–35.

Platelet Biology and Function

Platelet adhesion
 Platelet activation
 Platelet aggregation

Platelet Biology and Function

Platelet adhesion
 Platelet activation
 Platelet aggregation

Integrin

- α and β subunits
- Active and inactive state
- L-arginyl-L-glycyl-Laspartate (RGD)
- "Inside out" signaling
- "Outside in" signaling

Integrin αIIbβ3

Topol et al, Lancet 1999;353:227-31

Integrins in Cardiovascular System

- Platelets
- $\begin{array}{l} \alpha_{IIb}\beta_{3}, \ \alpha_{v}\beta_{3}, \ \alpha_{2}\beta_{1}, \ \alpha_{5}\beta_{1}, \ \alpha_{6}\beta_{1} \\ \bullet \ Endothelial \ cells \end{array}$
 - $\alpha_{v}\beta_{3}, \ \alpha_{v}\beta_{5}, \ \alpha_{2}\beta_{1}, \ \alpha_{3}\beta_{1}, \ \alpha_{5}\beta_{1}, \ \alpha_{1}\beta_{1}, \ \alpha_{6}\beta_{1}$
- Smooth muscle cells
 - $\alpha_{\nu}\beta_{3}, \ \alpha_{\nu}\beta_{5}, \ \alpha_{2}\beta_{1}, \ \alpha_{3}\beta_{1}, \ \alpha_{5}\beta_{1}$
- Leukocyte

Platelet Adhesion Receptors

 $vWF \leftrightarrow GPIb-IX-V$

Varga-Szabo D, et al. Arterioscler Thromb Vasc Biol 2008;28:403

Von Willebrand Factor (vWF)

- Found in the Weibel-Palade bodies of endothelial cells, in the α -granules of platelets, and in the plasma
- A large polymer of disulfide-linked subunits, each comprising 2050 amino acid residues and up to 22 carbohydrate chains
- Platelet receptors; GPIb and integrin α IIb β 3
- No significant interactions with GPIb-V-IX under normal conditions.
- Conformational changes because of high shear forces and the immobilization on a surface
- A strong adhesive substrate when immobilized on exposed collagen at sites of injury

GP Ib-V-IX Complex

- Four different genes encode the receptor complex
 - α-subunits of GP lb (135 kDa); the major functional subunit
 - β-subunits of GP lb (25 kDa)
 - GP IX (22kDa)
 - GP V (88 kDa)
- Bernard-Soulier syndrome
 - Lack or dysfunction of GP Ib-V-IX
 - A congenital bleeding disorder characterized by mild thrombocytopenia, giant platelets, and inability of the cells to aggregate in response to ristocetin

Platelet Biology and Function

1.Platelet adhesion2.Platelet activation3.Platelet aggregation

Platelet Activation

- Rapid changes in platelet morphology
 - From smooth disks into irregular spheroids
 - Extrusion of filopodia, which not only enhance adhesion but also are rich in GP IIb/IIIa receptors
- Granule secretion (ADP), and generation of thromboxane A₂
- Involvement of the cell surface in coagulation reactions; thrombin generation
- Platelet aggregation

ADP

- Stored at high concentrations in dense granules of platelets, and released on platelet activation.
- Released ADP strongly activates platelets in an autocrine and paracrine fashion.
- It can also be released from damaged cells at places of vascular injury.
- Platelet activation by ADP is mediated by 2 G protein-coupled receptors, P2Y1 (G_q) and P2Y12 (G_{i2}).

Thrombin

- Thrombin formation after disruption of the vascular endothelium. Thrombin formation takes place on cellular surfaces including that of activated platelets.
- Protease-activated receptors (PARs)
 - G protein-coupled receptors
 - PAR1 and PAR4 on human platelets
 - PAR1; at low thrombin concentrations
 - PAR4; only at high thrombin concentrations
- SCH 530348
 - an oral reversible PAR1 antagonist

Thrombin; signaling

- Thrombin mediated cleavage of the extracellular domain of the receptor and exposure of a "tethered ligand" at the new end of the receptor
- Signal transduction
 - Activation of PLC and PKC
 - Autoamplification through the production of TXA₂, the release of ADP, and generation of more thrombin on the platelet surface

Role of G protein–coupled Receptors in the Thrombotic Process

CalDAG-GEF1, calcium and diacylglcerol-regulated guanine-nucleotide exchange factor 1 RIAM, Rap1-GTP–interacting adapter molecule 2008 Platelet Colloquium Participants, ATVB 2009;29:449-457

Rap1b/CalDAG-GEFI

- A small GTP binding protein of the Ras family
- Deficiency of Rap1b in platelets leads to defective $\alpha II\beta3$ activation, prolonged bleeding times, and protection against arterial thrombosis.
- Activation of Rap1b is controlled by 1. CalDAG-GEFI; rapid but reversible Rap1 activation
 - 2. Protein kinase C (PKC); sustained Rap1 activation
 - Cal-DAG-GEFI deficiency
 - impaired platelet aggregation responses to ADP or TxA2 ex vivo
 - prolonged bleeding times and protection from arterial thrombosis in vivo.

CalDAG-GEFI; Ca²⁺ and diacylglycerol-regulated guanine-nucleotideexchange factor I

Nieswandt B et al, J Thromb Haemost, 2009;7(Suppl 1): 206

Schematic representation of the CalDAG-GEFI-dependent and PKC-dependent signaling pathways leading to α II β 3 activation in mouse platelets

Cifuni SM et al, Blood 2008;112:1696-1703

Protein Kinase Akt

- A principal target for PI-3K signaling
- Both Akt1 and Akt2 isoforms in platelets.
- Both Akt1 and Akt2 are required for thrombus formation in mice
- Glycogen synthase kinase (GSK)-3 suppresses platelet function and thrombosis in mice
- Akt mediated phosphorylation of GSK-3 inhibits the kinase activity of the enzyme, and with it, its suppression of platelet function

β3 Cytoplasmic Tail

- β3 TM and cytoplasmic domain
- β3 TM helix hinge 2nd helix hinge NPLY motif 3rd helix - NITY motif
- NPLY motif (residues 744-747); talin FERM domain
 NITY motif (residues 756-759); kindlin-3 FERM domain
- Interaction with large number of cytosolic protein, but identified functional significance in a few proteins
 - Talin-1, Kindlin-3, Rap1b/CalDAG-GEFI, RIAM

Bennett JS et al, Journal of Thrombosis and Haemostasis, 2009;7:200–205

Active integrin α IIb β 3

Platelet Biology and Function

1.Platelet adhesion2.Platelet activation3.Platelet aggregation

Platelet Aggregation

Scanning electron micrograph of discoid, dormant platelets

Activated, aggregating platelets illustrating fibrin strands

Kuwahara M et al. Arterioscler Thromb Vasc Biol 2002;22:329

Inactive platelets

Inactive GP IIb/IIIa Activated GP IIb/IIIa

Fibrinogen

Antagonist

Activated platelets

Antagonist to Glycoprotein IIb/IIIa

- Abciximab
 - Chimeric monoclonal antibody
- Eptifibatide
 - Peptide inhibitor of KGD sequence
- Tirofiban, Lamifiban
 - Nonpeptide inhibitor of RGD sequence

