

The Role of MDCT in Detection of Vasospastic Angina

Eun-Ju Kang

Department of Radiology, Cardiovascular Imaging, Dong-A University College of Medicine, Busan, Republic of Korea

Introduction

- Classical angina
 - Attack is induced by exertion and relieved by rest or NTG administration, and is associated with transient ST depression.
 - Pathogenesis: increased myocardial oxygen demand in the presence of fixed organic stenosis of epicardial coronary arteries.
- In 1959, Prinzmental et al. described a new form of angina pectoris "variant form of angina pectoris"
 - The attack occurred at rest (not induced by exertion), and is associated with ST elevation.
- Spasm of epicardial coronary artery was documented angiographically in early 1970s,
 - \rightarrow coronary spasm was established as the cause of variant angina.

Definition of coronary spasm

- Reversible focal constriction of a segment or segments of coronary artery such as to cause restriction of coronary blood flow and myocardial ischemia
- It may read to not only angina pectoris, but also various ischemic disease, including acute myocardial infarction and sudden cardiac death
 - → Thus, variant angina is only one aspect or wide spectrum of myocardial ischemic syndrome caused by coronary spasm
- Now called as "vasospastic angina"

(variant angina ≠ vasospastic angina)

Pathogenesis of coronary spasm

Endothelial cell dysfunction

- Spasm induced by endothelium-dependent vasodilators (Ach, ergonovine, serotonin, histamine..), and released by endotheliumindependent vasodilator (nitrate).
- Polymorphisms of eNOS gene
- Hypercontractility of coronary smooth muscle

Circadian variation

- Spasm occurs at from midnight to early morning; increased vagal tone, hyper-reactivity to sympathetic stimulation
- Chronic low-grade inflammation
 - Smoking, Alcohol, metabolic abnormalities.

Epidemiology of coronary spasm

- 15~40% in patients who complained of chest pain
- **Men**> female
- 40~70 years of age (post-menopausal women)
- Frequency has become less frequent:
 - Use of CCBs (HTN, ischemic heart disease) or other medications (aspirin, statin, ACEi..),
 - Decreased smokers.

Diagnosis of coronary spasm

Not necessarily easy;

- Not induced by exercise, occurs at rest from midnight to early morning.
- Attack is transient and unpredictable.
- Noninvasive Diagnosis
 - Standard 12-lead ECG during attack, Holter monitoring, Exercise testing, Hyperventilation testing..
 - Less sensitive than pharmacological test
 - Waters et al. [Circulation 1983;67:310-5]

 TABLE 2. Comparison of ECG Changes During Ergonovine,

 Cold Pressor and Exercise Tests

	Ergonovine test	Cold pressor test	Exercise test
ST elevation	32 (94%)	3 (9%)	10 (29%)
Pseudonormalization of T waves	0	2	4*
ST depression	1	0	9†
No ECG changes	1	29	11
Total	34	34	34

Spasm provoking test

- Ach(acetylcholine) and Ergonovine tests are most often used
 - Positive response: transient occlusion (>90%) of coronary artery with sings and symptoms of myocardial ischemia (angina/ST changes)
- Usually safe, however a number of complications may occur
 - With invasive coronary angiography, use pharmacologic agent
 - → Hypertension, hypotension, abdominal cramps, nausea, vomiting, other nonspecific complications
 - Potential risk of severe myocardial ischemia or ventricular fibrillation

Coronary CT angiography

- Coronary CT angiography (CCTA) using MDCT has been widely used as noninvasive imaging technique for evaluation of coronary artery disease.
- There are a **few cases** with spontaneous coronary artery spasm which occasionally detected by CCTA.
 - Ota et al. [Int J Cardiol. 2011]

41-year-old male without overt risk factors (non-smoker) suddenly complained of severe chest pain.

Coronary CT angiography

- The most published papers about coronary spasm in CCTA were case reports, and only two original articles published.
 - Ito et al. In vivo assessment of Ergonovine-induced Coronary artery spasm by 64-slice multislice computed tomography. *Circ Cardiovascu Imaging 2012;5:226-232*
 - Kang et al. Coronary vasospastic angina: assessment by multidetector CT coronary angiography. *KJR* 2012;13:27-33

→ Retrospectively reviewed the characteristics of spasm site (matched with provoking site) on CCTA.

In Vivo Assessment of Ergonovine-Induced Coronary Artery Spasm by 64-Slice Multislice Computed Tomography

Tsuyoshi Ito, MD; Mitsuyasu Terashima, MD; Hideaki Kaneda, MD; Kenya Nasu, MD; Mariko Ehara, MD; Yoshihisa Kinoshita, MD; Tatsuya Ito, MD; Masashi Kimura, MD; Nobuyoshi Tanaka, MD; Maoto Habara, MD; Etsuo Tsuchikane, MD; Takahiko Suzuki, MD

- Retrospectively reviewed a total of 296 plaques in 199 patients
 - with clinically suspected coronary spastic angina without significant stenosis (>75%) who underwent both ergonovine provocative testing and MDCT.
- Spasm provoked (+): 46 sites in 43 patients (22%)
 - CCTA: All 46 sites had a coronary plaque
 - No coronary spasm occurred at the normal coronary segment in CCTA.

Circ Cardiovasc Imaging. 2012;5:226-232

In Vivo Assessment of Ergonovine-Induced Coronary Artery Spasm by 64-Slice Multislice Computed Tomography

Tsuyoshi Ito, MD; Mitsuyasu Terashima, MD; Hideaki Kaneda, MD; Kenya Nasu, MD; Mariko Ehara, MD; Yoshihisa Kinoshita, MD; Tatsuya Ito, MD; Masashi Kimura, MD; Nobuyoshi Tanaka, MD; Maoto Habara, MD; Etsuo Tsuchikane, MD; Takahiko Suzuki, MD

Table 3.Comparison of CT Findings Between Spasm and
Nonspasm Groups

	Spasm Group	Nonspasm Group	P*
No. lesions	46	250	
Calcification			< 0.01
Noncalcified	44 (96)	47 (19)	
Spotty calcification	2 (4)	120 (48)	
Large calcification	0 (0)	83 (33)	
Attenuation			< 0.01
Low	3 (7)	54 (22)	
Intermediate	43 (93)	70 (28)	
High	0 (0)	1 <mark>26 (</mark> 50)	
Remodeling			< 0.01
Positive	3 (7)	96 (38)	
Intermediate	12 (26)	126 (50)	
Negative	31 (67)	28 (11)	

Data are presented as n (%), unless otherwise indicated.

Noncalcified plaque,

- Intermediate attenuation (53.8~130HU) plaque,
- with **negative remodeling** is more frequent in spasm group.

Circ Cardiovasc Imaging. 2012;5:226-232

Coronary Vasospastic Angina: Assessment by Multidetector CT Coronary Angiography

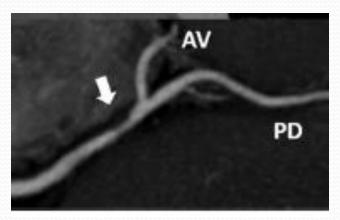
Koung Mi Kang, MD¹, Sang Il Choi, MD¹, Eun Ju Chun, MD¹, Jeong A Kim, MD¹, Tae-Jin Youn, MD², Dong Ju Choi, MD²

¹Division of Cardiovascular Imaging, Department of Radiology, ²Division of Cardiology, Department of Internal Medicine, Cardiovascular Center Seoul National University Bundang Hospital, Gyeonggi-do 436-707, Korea

- Retrospectively analyzed both ergonovine test and CCTA findings of **53 patients** with clinically suspected vasospastic angina
- Spasm provoked (+): 25 patients
 - CCTA:
 - 12 patients : no definite plaque with negative arterial remodeling
 - 7 patients: normal
 - 6 patients: insignificant stenosis
 - 3 noncalcified plaque, 2 mixed plaque, 1 calcified plaque

KJR 2012:13:27-33

Coronary Vasospastic Angina: Assessment by Multidetector CT Coronary Angiography


Koung Mi Kang, MD¹, Sang Il Choi, MD¹, Eun Ju Chun, MD¹, Jeong A Kim, MD¹, Tae-Jin Youn, MD², Dong Ju Choi, MD²

¹Division of Cardiovascular Imaging, Department of Radiology, ²Division of Cardiology, Department of Internal Medicine, Cardiovascular Center Seoul National University Bundang Hospital, Gyeonggi-do 436-707, Korea

- Significant stenosis with negative remodeling, but no definite plaque: characteristic finding on CCTA.(12 patients/ 25 patients)
 - Sensitivity 48%, specificity 100%, PPV 100%, NPV 68%.
- Limitation
 - High specificity with relatively low sensitivity for diagnosis of vasospastic angina.

Coronary CT angiography

- Limitation or bias factors of CCTA:
 - Low sensitivity
 - Coronary spasm is usually occurs in the early morning (rarely during the day time)
 - Routinely use of sublingual vasodilator during CCTA
 - Spatial and temporal resolution
 - Spasm vs True stenosis with invisible (fatty) plaque.

Circ Cardiovasc Imaging. 2012;5:226-232 " Non calcified plaque with negative remodeling"

KJR 2012:13:27-33 " **No definite plaque** with negative remodeling"

Coronary CT angiography

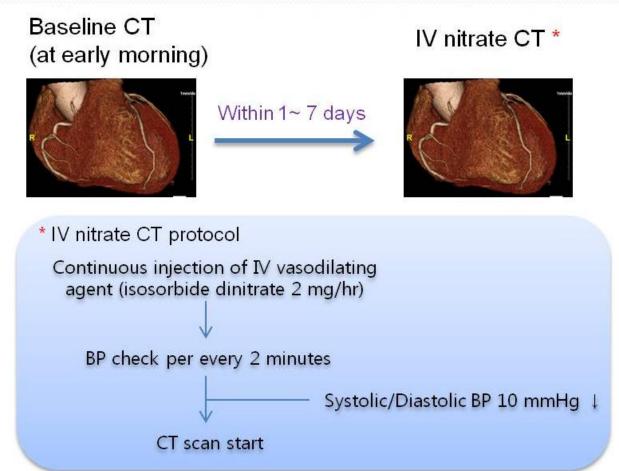
- We speculate that ..
 - Sensitivity 1
 - Acquisition of CCTA in the early morning may increase the sensitivity of spasm detection.
 - Acquisition of CCTA without vasodilator may increase the sensitivity of spasm detection.
 - Spasm vs True stenosis with invisible (fatty) plaque.
 - Acquisition of CCTA during a intravenous (IV) vasodilator injection may provide fully dilated coronary artery image.

Double acquisition of CCTA with/without intravenous vasodilator injection for diagnosis of vasospastic angina. – Pilot study

Eun-Ju Kang¹, Moo Hyun Kim², Dong Hyun Lee², Ki-Nam Lee¹

¹Department of Radiology, Dong-A University, College of Medicine, Busan, Korea ²Department of Cardiology, Dong-A University College of Medicine, Busan, Korea

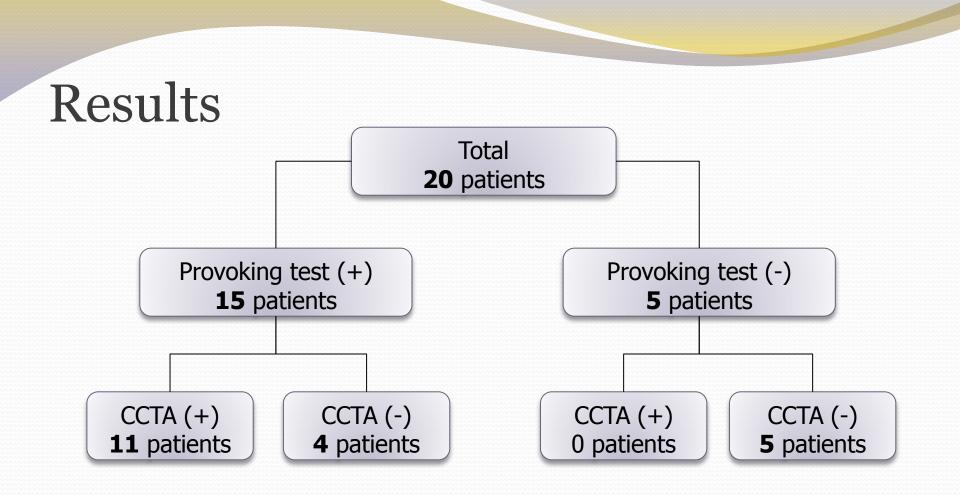
Purpose


 The purpose of our study was to evaluate the feasibility of double acquisition of CCTA with/without IV vasodilator injection for diagnosis of vasospastic angina.

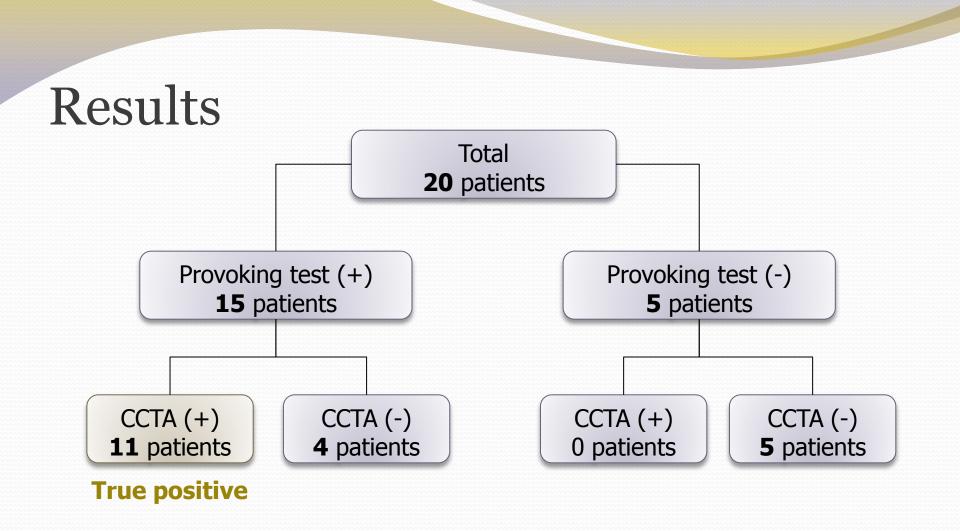
Material and methods; Subjects

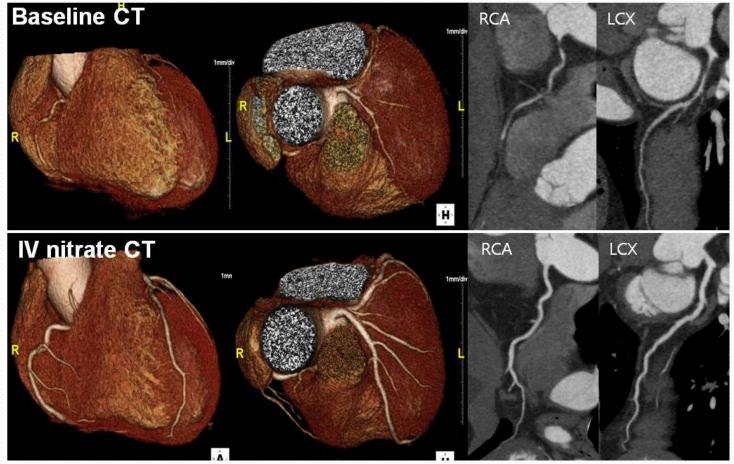
- **20 consecutive patients** with clinically highly suggestive of vasospastic angina.
 - 15 male, 5 female
 - Mean age, 60 ± 9 years (range, 43-84 years)
 - Exclusion criteria were;
 - On coronary artery angiography (CAG): Significant fixed atherosclerotic stenosis (> 50% lumen diameter)
 - On CCTA: Calcium score > 400 or inadequate for analysis of coronary artery.
 - The definition of vasospastic angina is based on invasive coronary angiography with positive ergonovine provocation test

CCTA Scan Protocol * Diagram of Scan acquisition

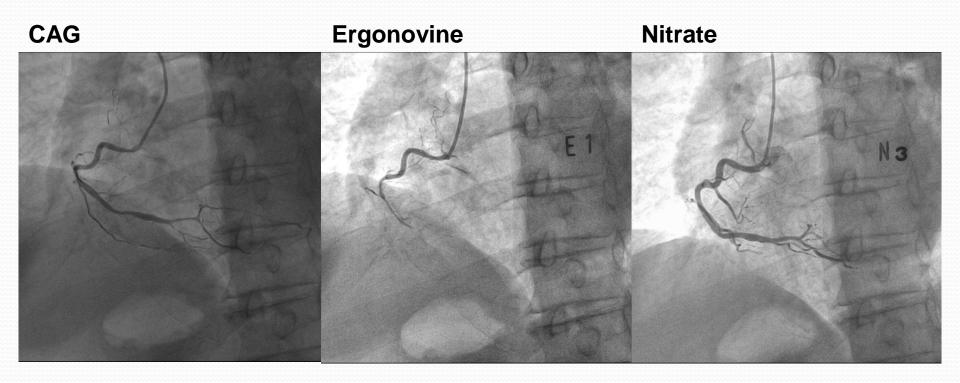


Post processing and analysis


- We analyzed the curved MPR image and cross-sectional images of coronary arteries on **baseline CT** and **IV nitrate CT**
- We used **positive criteria** of vasospastic angina on CCTA as followings:
 - i) Significant stenosis with negative remodeling but no definite evidence of plaques, that completely dilated on IV nitrate CT, or
 - ii) **Diffuse small diameter (< 2 mm)** of a major coronary artery **with beaded appearance**, that completely dilate on IV nitrate CT.

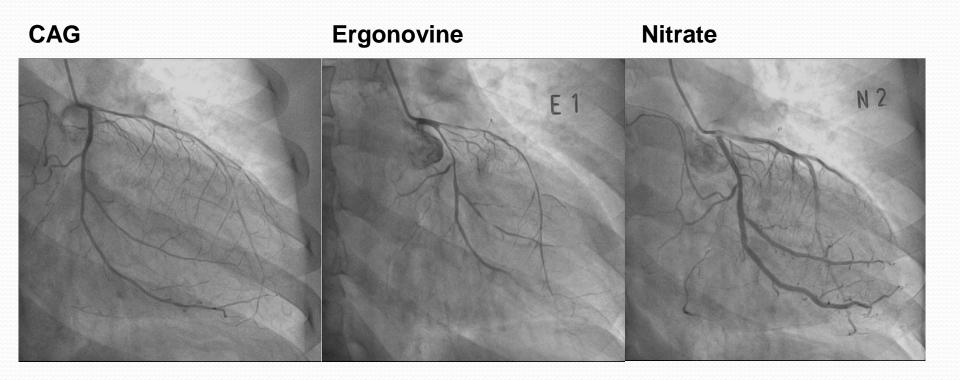

Statistical Analyses

- We determined the diagnostic performance of CCTA findings of vasospastic angina using ergonovine provocation test with CAG as a reference standard.
 - Firstly, right-side CAG was performed
 - \rightarrow provocation (+): nitroglycerin was subsequently injected
 - → provocation (-): left-side CAG was performed
- We evaluated the diagnostic performance of CCTA..
 - Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were evaluated.


- Diagnostic performance of CCTA
 - Sensitivity 73%, specificity 100%, PPV 100%, NPV 56%

Case 1. A 67 year old male patient presented with intractable recurrent chest pain.

Provoking test (+) and CCTA (+)

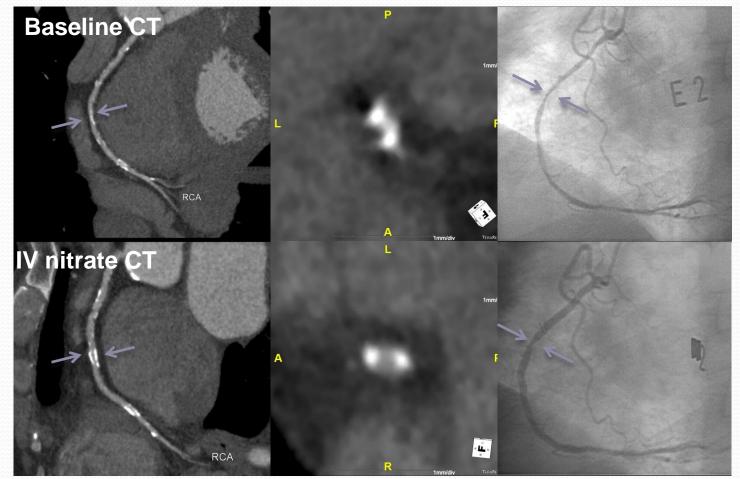


Case 1. A 67 year old male patient presented with intractable recurrent chest pain.

Case 2. A 47 year old male patient presented with chest pain.

Provoking test (+) and CCTA (+)

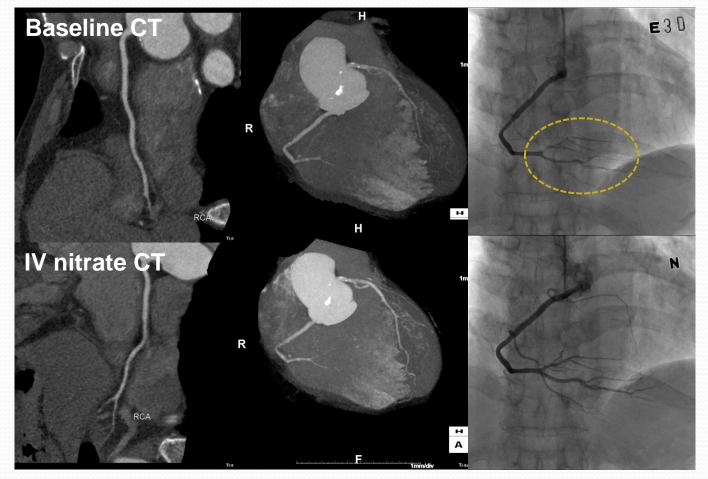
Case 2. A 47 year old male patient presented with chest pain.

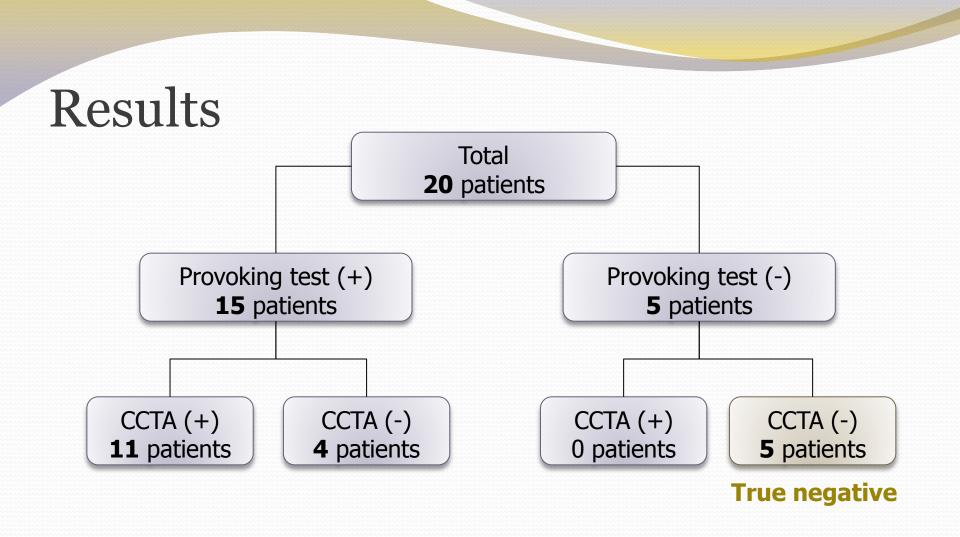

- 1 patient: calcified plaques that hided coronary spasm.
- 1 patient: spasm was located at distal RCA that was too small diameter to evaluated luminal stenosis on CCTA.

ASCI 2014

• 2 patients: **negative finding** on both baseline and IV nitrate CCTA.

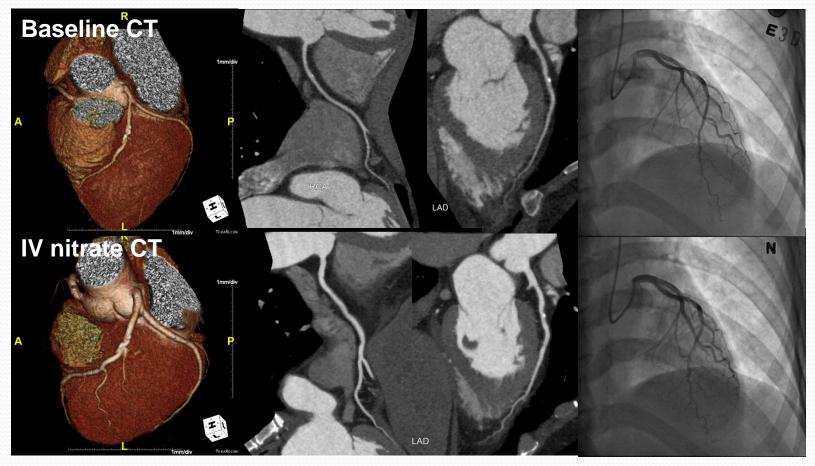
Representative case: False negative-1


Provoking test (+) and CCTA (-)


Case 3. A 60 year old male patient presented with intractable recurrent chest pain.

Representative case: False negative-2

Provoking test (+) and CCTA (-)



Case 4. A 60 year old male patient presented with intractable recurrent chest pain.

Representative case: True negative-1

Provoking test (-) and CCTA (-)

Case 5. A 53 year old female patient presented with intractable recurrent chest pain.

Results

Contrast media

- Total iodinated contrast medium volume: 120 ml (Xenetix 350 mg/ml)
 - Baseline CT 60 ml + IV nitrate CT 60 ml.

Radiation dose

- Mean effective dose (baseline CT + IV nitrate CT):
 8.3 ± 3.6 mSv (range: 2.9 13.5 mSv)
 - * Effective dose; calculated using a conversion coefficient for chest and coronary arteries (k = 0.014mSv/ [mGy⁻cm]

Limitations

- 1. Although a high specificity and PPV, **the sensitivity was relatively low (73%)**, it is insufficient to predict variant angina **without provoking test.**
 - Higher sensitivity compare with the results of previous literature (sensitivity 48%, Kang et al. KJR 2012) which produced from retrospective analyze of conventional CCTA.
- Double acquisition of CCTA per one individual requires more amount of contrast media and radiation dose.
- 3. The sample size of our study was relatively small.

Conclusion

 We speculate that double acquisition of CCTA with and without IV vasodilator can increase the sensitivity of vasospastic angina detection.

Cons of CCTA in coronary spasm

Cons

- Detection
 - Spasm is transient and unpredictable.
 - Usually not occurs at day time
- Relatively low spatial and temporal resolution than conventional CAG.
- Radiation dose, contrast media

Pros of CCTA in coronary spasm

- Pros
 - Most frequently using primary screening tool of CAD
 - Noninvasive

Diagnosis of coronary spasm in CCTA X

Pros of CCTA in coronary spasm

- Pros
 - Most frequently using primary screening tool of CAD
 - Noninvasive

Detection of coronary spasm in CCTA O (?)

Thank you !

Moo Hyun Kim, Department of Cardiology, Dong-A University College of Medicine, Busan, Republic of Korea.
Ki-Nam Lee, Department of Radiology, Dong-A University College of Medicine, Busan, Republic of Korea.

The 3rd Annual Meeting of SCCT Kerel Berlevel Committee

SCCT Korea International Regional Committee

February 13 (Fri) - 14 (Sat), 2015 Grand Hilton Seoul, Korea

Early Bird Registration: January 9 (Fri), 2015 Pre-registration: February 6 (Fri), 2015