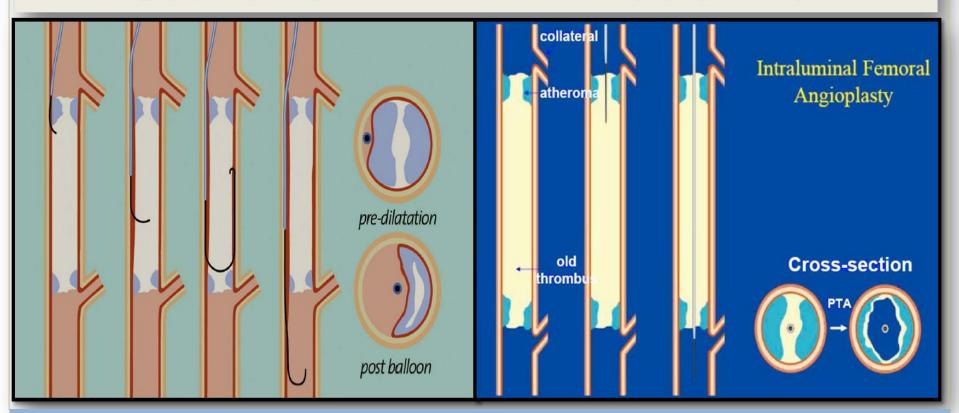
Subintimal angioplasty in BTK CTO intervention



Sang-Ho Park MD. PhD,

Soon chun hyang University Cheonan Hospital

Subintimal

Intraluminal

 Percutaneous <u>intentional extraluminal</u> recanalization (PIER); CTO lesion of the <u>femoral and popliteal arteries</u> by subintimal dissection by <u>Bolia in1990</u>

CardioVasc Interv Radiol 1990;13:357–363

Subintimal

Pros

Low-cost device and procedure, Time-saving

Intraluminal

Cons

More expensive and time-consuming procedure

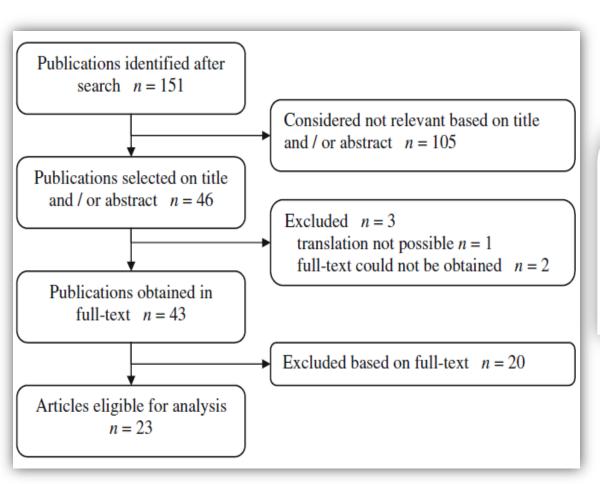


Fig. 1. ant. Tibial artery: CTO (blue arrows) with good distal channel from peroneal a, 2. peroneal artery: two severe stenosis (red arrows), 3. post. Tibial artery: CTO without distal channel (yellow color), A and B. Subintimal approach & final angio (A,B); time to guidewire successful passage into true lumen (15 sec)

How about clinical outcomes for <u>Subintimal angioplasty</u>

Subintimal recanalization;

clinical outcomes, meta-analysis data collection

the infrainguinal vessels. The keywords <u>"percutaneous intentional extraluminal revascularization,"</u> "subintimal angioplasty," "peripheral arterial disease," "femoral artery," "popliteal artery," and "tibial artery" were used.

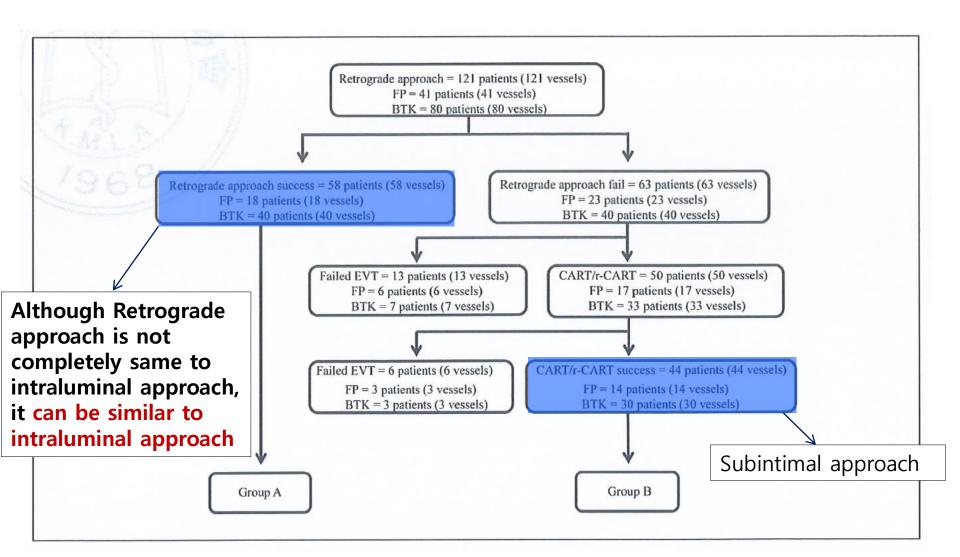
Subintimal recanalization; clinical outcomes; primary patency, limb salvage, clinical success

Primary Patecy:
 50% stenosis at bmon or 1-year follow-up

 <u>Limb salvage</u>: no major amputation Clinical success:
 Relief of pain at rest
 Healing of ulcers
 Healing of minor
 amputation

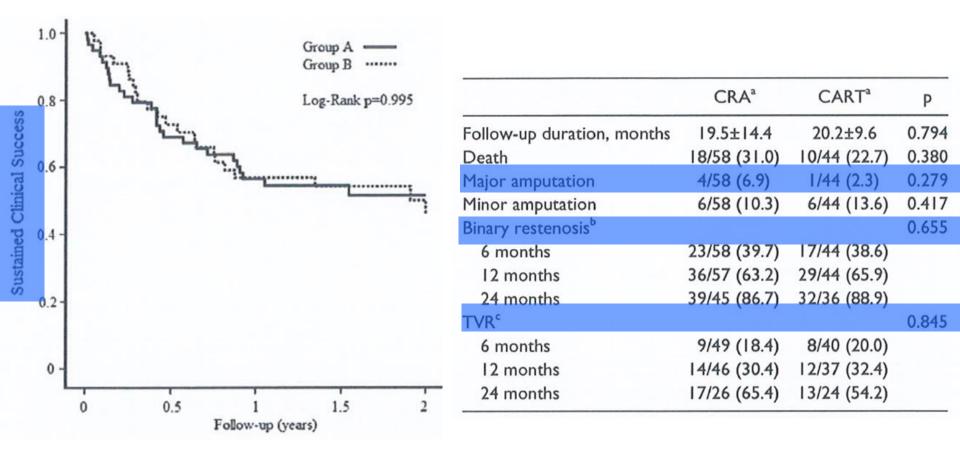
Subintimal recanalization; clinical outcomes

Study	Statistical method	Clinical success (mo)	Complications	Primary patency (mo)	Primary assisted patency (mo)	Limb salvage (mo)	Survival (mo)	
Lesion (mostly) in crural vessels								
Ingle [14]	KMA	-	9/70 (13%)	-	-	94% (12)	-	
Nydahl [23]	KMA	56% (12)	3/28 (11%)	53% (12) ^a	-	85% (12)	-	
Vraux & Hammer [29]	KMA	68% (12)	5/40 (13%)	56% (12) ^b	-	81% (12)	78% (12)	
Vraux & Bertoncello [30]	KMA	63% (12)	7/50 (14%)	46% (12) ^b	-	87% (12)	65% (12)	
Lesion (mostly) in femoral or femoropopliteal artery								
Hynes [13]	LTA	-	6/74 (8%)	-	-	-	-	
Myers [22]	KMA	-	2/82 (2%)	74% (3) ^a	87% (3)	-	-	
Treiman [28]	KMA	-	4/29 (14%)	64% (24) ^b	-	80% (24)	50% (24)	
Mixed lesions (all infrainguinal)								
Lazaris & Tsiamis [17]	KMA	69% (24)	14/112 (13%)	-	-	88% (12)	-	
Lazaris & Salas [18]	KMA	-	-	50% (12) ^b	-	92% (12)	87% (12)	
Spinosa [26]	KMA	-	4/40 (10%)	-	_	66% (12)	71% (12)	


Outcomes of Endovascular Therapy With the Controlled Antegrade Retrograde Subintimal Tracking (CART) or Reverse CART Technique for Long Infrainguinal Occlusions

Journal of Endovascular Therapy 2016, Vol. 23(2) 330–338 © The Author(s) 2016 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1526602816630533 www.jevt.org

SSAGE


Hsin-Hua Chou, MD^{1,2}, Hsuan-Li Huang, MD¹, Chien-An Hsieh, MD¹, Shih-Jung Jang, MD¹, Shih-Tsung Cheng, MD^{1,2}, Sou-Chan Tsai, MD¹, Tien-Yu Wu, MD¹, and Yu-Lin Ko, MD, PhD^{1,2}

Anterograde → retrograde → bi-directional (CART / reverse CART)

Although this study is small sample size, it can indirectly show which is better between intraluminal and subintimal techniques in BTK long CTO lesion

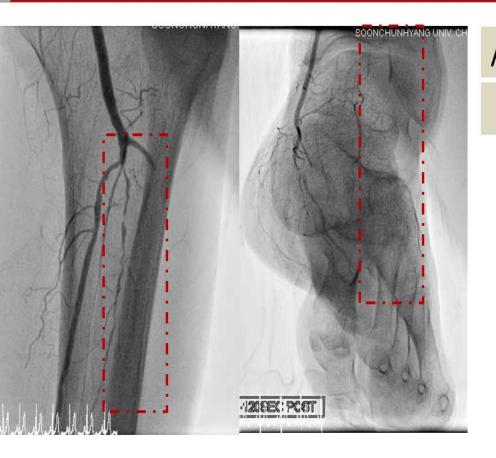
→ the answer may be 'no difference'

Group A : CRA (Conventional retrograde approach)

Group B: CART & rCART

Journal of Endovascular Therapy 2016, Vol. 23(2) 330–338

The relationship between Subintimal and intraluminal angioplasty is <u>complementary cooperation</u>.


Which better in BTK CTO lesions?

There is no comparison study for clinical outcomes between two techniques

The step-by-step use of subintimal and intraluminal strategy could be improved technical success rate. Upto date, two technical modality seems to be the <u>complementary cooperation</u>.

Subintimal and intraluminal; case


complementary cooperation for technical success

Diffuse long CTO lesion in ATA

No distal channel

After successful ballooning of PTA Relative good distal channel

Subintimal and intraluminal; case complementary cooperation for technical success

Intraluminal compatible:

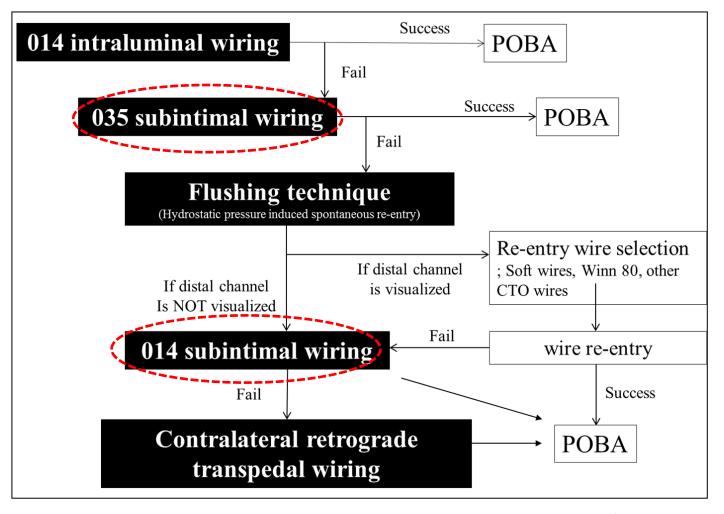
-> angiographic finding & portion

Subintimal limitation

- calcified, complex long CTO lesion
- entry and re-entry failure
- Increase of original lesion length
- peri-adventitial hematoma and vessel perforation,
- collateral vessel occlusion
- using atherectomy device

Intraluminal option

My usual practices


- Intra-luminal angioplasty supported by microcatheter
- Subintimal angioplasty
- Sub-maximal subintimal angioplaty and intraluminal re-entry using stipper guidewire with supported catheter
- Sub-maximal subintimal angioplasty and retrograde route

Subintimal angioplasty is more useful in CTO lesion without definite distal channel than intraluminal angioplasty

Subintimal angioplasty in CTO lesion without distal channel

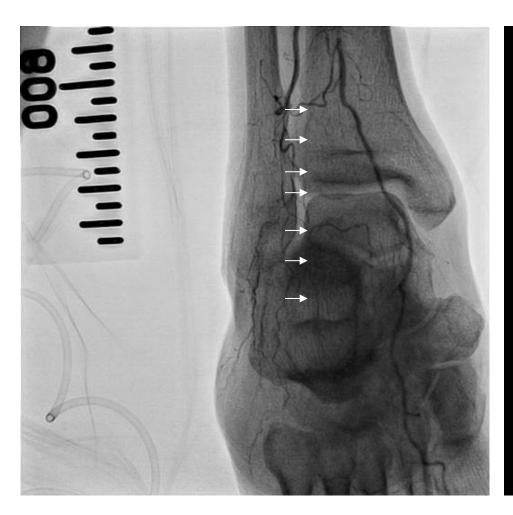
Subin	timal	Intraluminal			
Pros	Cons	Pros	Cons		
Low-cost device and procedure, Time-saving	failure of re-entry, lesion length increase, hematoma, perforation	Easy transition from crossing highly stenotic lesion in the CTO	More expensive and time-consuming procedure		
CTO lesion irrespective of distal channel may be available	Limited use of atherectomy, collaterals occlusion	Atherectomy is more useful and safer	CTO lesion Without distal channel; hard to application		

How to recanalize the BTK CTO lesions without visible distal stump several subintimal wiring methods are effective

014 intraluminal wiring

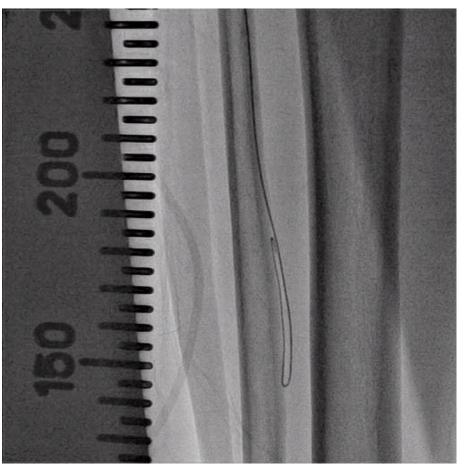
Success

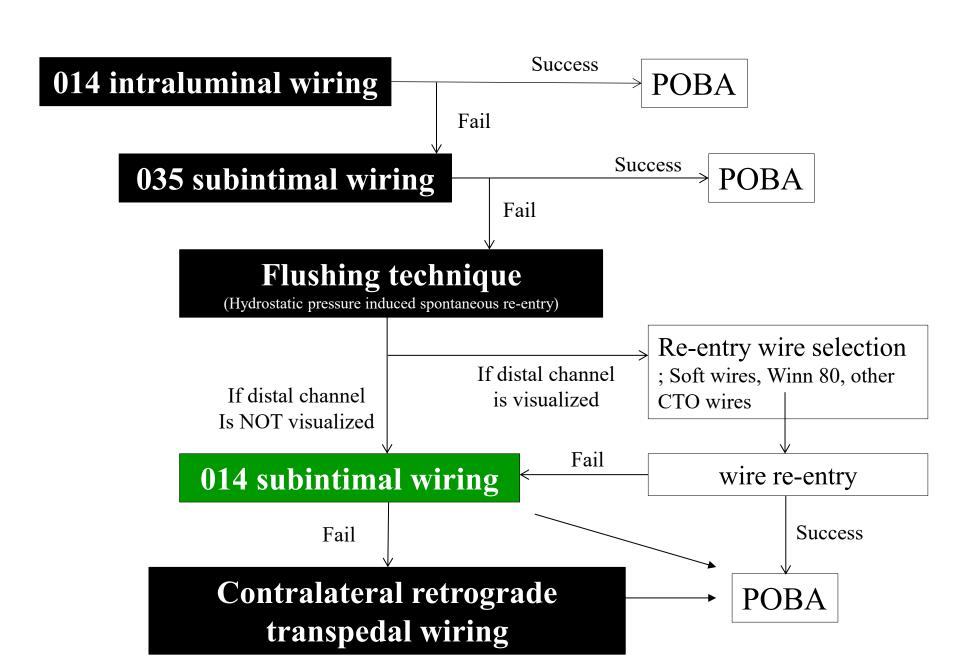
POBA

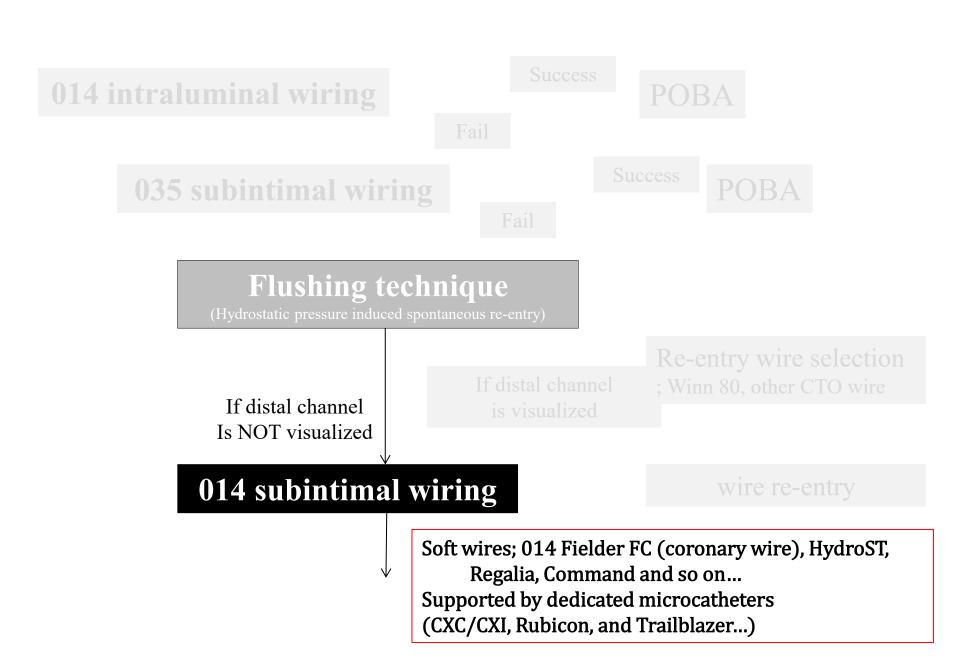

Fail

035 Terumo subintimal wire tracking

Empirical 035 Terumo subintimal wiring using 1.5 J-tip shape can be useful until feeling *free motion* around the ankle level (Push down far beyond the ankle level is *not recommended* due to the risk of rupture, esp in calcified lesion).


Anterior tibial artery CTO without distal channel


035 Terumo Subintimal Wiring (1.5J)



Anterior tibial artery CTO without distal channel

CASE 1; 014 Subintimal Wiring; HydroST (COOK)

CASE 1; 014 Subintimal Wiring; POBA and Final

CASE 2; 014 Subintimal Wiring; Regalia (Ashai)

CASE 2; 014 Subintimal Wiring; Regalia (Ashai)

CASE 2; 014 Subintimal Wiring; POBA and Final

Summary

Simple subintimal angioplasty

Hydrid angioplasty

- Subintimal intraluminal
- Intraluminal subintimal
 - Multiple cross-over
- CAR (subintimal) T or Reverse CART

Using, sometimes, bi-directional approach

Subintimal angioplasty (wiring) in CTO lesion without distal channel

Thank you for your attention