Joint meeting of Coronary Revascularization (JCR2017) in Busan, Korea

Increased Dipeptidyl Peptidase-4 Accelerates Diet-Related Vascular Aging and Atherosclerosis in ApoE-Deficient Mice under Chronic Stress

> Department of ICU Yanbian University Hospital

Yanna Lei MD, PhD; Xianwu Cheng,MD,PhD,FAH

December 9, 2017

DPP-4 and its inhibitors

OPP-4 is a complex enzyme that acts as a membrane-anchored cell surface exopeptidase that truncates a large number of peptides (e.g., hormones, cytokines, and growth factors). DPP-4 has gained considerable interest as a therapeutic target, and a variety of DPP-4 inhibitors that prolong the insulinotropic effects of glucagon-like peptide-1 (GLP-1) are widely used in clinical settings as antidiabetic drugs.

DPP-4 and it's substrates

Lei and Cheng. Circ J 2017;81:770-6

Chronic psychological stress increased blood DPP-4 levels in a time dependent manner

Zhu, Lei and Cheng. JAHA 2017;6:e006439

Zhu and Lei. PLOS ONE 2017;16:e160372

Objective

The aim of our study was to investigate the effects of DPP-4 inhibitor on vascular aging and atherosclerotic plaque growth and the related mechanisms with special focusing on APN-PPAR α signaling activation in ApoE-/- mice under chronic psychological stress.

APN: adiopoectin; **PPAR-α**: Peroxisome Proliferator-Activated Receptor;

Protocol (1)

6-week-old male ApoE^{-/-} mice (KOR/StmSlc background)

Effects of stress on plasma lipid profile and DPP4, leptin, GLP-1, and APN levels

Parameter	Non-stress	Stress
T-ch (mg/dL)	575.2 ± 14.3	562.5 ± 15.8
HDL-C (mg/dL)	23.1 ± 2.2	23.0 ± 2.3
Triglyceride (mg/dL)	135.1 ± 4.8	73.5 ± 4.0 **
NEFA ($\mu EQ/L$)	194 ± 12	$106 \pm 12^{**}$
BUN (mg/dL)	3.9 ± 0.3	4.2 ± 0.3
Creatinine (mg/dL)	0.5 ± 0.0	0.8 ± 0.0
Glucose (mg/dL)	39.3 ± 2.6	36.1 ± 2.9
DPP4 (ng/ L)	305 ± 28	$823 \pm 34^{**}$
Leptin (pg/ml)	402 ± 45	177 ± 25**
GLP-1 (pM)	15.9 ± 1.1	$9.2 \pm 0.8^{**}$
APN (ng/mL)	7577 ± 382	$5619 \pm 598*$

T-ch: total cholesterol; HDL-C: high-density lipoprotein cholesterol; NEFA: nonesterified fatty acid; BUN: blood urine nitrogen; DPP4: dipeptidyl peptidase-4; GLP-1, glucagon like protein-1; APN, adiponectin. Data are mean \pm SEM. * *P*< 0.05, ** *P*< 0.01 by ANOVA and Tukey's *post hoc* tests.

Stress reduced subcutaneous/inguinal adipose and body weight (BW)

Stress accelerated vascular senescence and plaque lipid accumulation and growth

Stress reduced plaque collagen volume and promoted elastin degradation

Stress enhanced mac infiltration, inflammatory chemokine expression and neovessel formation

Stressed aortas had increased levels of MMP-2/-9, TIMP1/2, CatS/K/Land APN and decreased eNOs genes MP-1 MMP-2 Relative mRNA abundance 75 Relative mRNA abundance 120 TIMP-2 B MMP-9 🗃 eNOS 50 80 25 40 O O Stress Stress Non-stress Non-stress 60 CatS Relative mRNA abundance 180 Relative mRNA abundance CatK 📾 CatL 45 120 30 60 15 O O Stress Non-stress Non-stress Stress

Stress increased levels of AT1R and gp91phox and decreased levels PPAR- α , except p-AMPK proteins

Protocol (2)

DPP4 inhibition increased levels of APN and GLP-1 proteins

Parameter	Stress	S-Ana
Triglyceride (mg/dL)	21.1 ± 2.2	$13.6 \pm 3.1*$
LDL (mg/dL)	47.6 ± 6.1	38.1 ± 12.5
HDL (mg/dL)	4.3 ± 0.2	5.0 ± 0.0
NEFA (µEQ/L)	152 ± 8	136 ± 13
BUN (mg/dL)	3.2 ± 0.4	4.1 ± 0.8
Creatinine (mg/dL)	0.5 ± 0.0	0.5 ± 0.0
DPP4 (ng/ L)	976 ± 4	477 ± 22**
Leptin (pg/ml)	214 ± 9	$301 \pm 25**$
GLP-1 (pM)	11.3 ± 0.6	$19.4 \pm 0.8 **$
APN (ng/mL)	5574 ± 417	$8492 \pm 584 **$

DPP4 inhibition mitigated vascular aging and plaque growth and collagen/elastin metabolism

Anagliptin inhibited macrophage infiltration and inflammatory chemokine expression

DPP4 inhibition mitigates the changes in AT1R, PPAR- α , p-AMPK, and gp91phox proteins

DPP4 inhibition reduced MMP-2/-9 activity

GLP-1 analogues exenatide stimulated APN expression in adipocytes in a dosedependent manner, but not by anagliptin

GLP-1 analogues exenatide improved atherosclerotic lesion formation

Stress S-Exe

Oil red O staining

Yang and Lei et al. Atherosclerosis 2017;264:1-10

Conclusion

These results indicate that the DPP-4 inhibition-mediated benefits are likely attributable, at least in part, to attenuation the plaque inflammation, oxidative stress and proteolysis associated with GLP-1-mediated APN production in $ApoE^{-/-}$ mice under stress. Thus, DPP-4 will be a novel therapeutic target the treatment of stress-related for cardiovascular disease.

