Cholesterol Crystals in Developing Atherosclerosis

William A. Boisvert

University of Hawaii John A Burns School of Medicine Center for Cardiovascular Research

> JCR 2018 Busan, Korea

Development of Atherosclerosis

Endothelial Cells in Atherosclerosis

- Provides barrier between the lumen and the vessel wall
- Mediates transmigration of lipid particles and leukocytes
- LDL particles are thought to transcytose through the endothelial layer
- Surprisingly little is known about the processing of LDL by the EC

Endothelial Cells in Atherosclerosis

Questions:

1. Do the endothelial cells take up LDL particles under hyperlipidemic conditions?

2. How do the cells process the lipid?

Cholesterol crystals are produced and secreted by human aortic endothelial cells upon LDL treatment

Lipid processing by HAoEC

Cholesterol crystal-induced changes in endothelial signaling

CC induces changes in endothelial function

What about cholesterol crystals in more advanced stages of atherosclerosis?

1. Chronicled the ultrastructural changes in atherosclerotic plaque formation through various stages of the disease.

2. Investigated the presence of cholesterol crystals in ultramorphological detail in advancing atherosclerosis.

Progression of atherosclerosis in the LDLR^{-/-} mice

SEM images of atherosclerotic endothelium early stages

SEM images of atherosclerotic endothelium late stages

Monocyte adherence to endothelium in early atherosclerosis

A) Monocyte adherence

Monocyte diapedesis through the endothelium

B) Monocyte Transmigration

C) Transmigrated Monocyte

Changes in extracellular matrix composition during atherosclerosis progression

4

weeks of HFD

Presence of cholesterol crystals during atherosclerosis progression

Presence of cholesterol crystals during atherosclerosis progression

Composition of subendothelial CC

Element	Weight%	Atomic%
C	32.03	56.63
N	12.04	18.25
0	15.12	20.07
Ca	0.00	0.00
Pd	5.87	1.17
Os	29.11	3.25
Au	5.83	0.63
Totals	100.00	

These early cholesterol crystals are composed of C, O and N but not Ca²⁺.

Visualization of atherosclerotic plaque through TEM

Visualization of atherosclerotic plaque through TEM

Localization of CC and cholesterol microdomains

Red: Autofluorescence Green: Cholesterol microdomains Blue: Nuclei White: Polarized Light (PLM)

Early cholesterol crystal formation

- EC robustly take up LDL and process the lipid intracellularly
- When the cells are overwhelmed with cholesterol the EC produce cholesterol crystals that become deposited subendothelially
- CC causes increase in RhoA and reduction in Rac1 and cAMP, all consistent with disturbance of endothelial barrier function
- The increase in endothelial permeability allows transmigration of leukocytes

Late cholesterol crystal formation

- Late cholesterol crystal formation most likely occurs in lipidladen macrophage foam cells
- Cholesterol crystals are also seen in the necrotic core, most likely due to lipid leakage from dead foam cells
- In advanced plaque both needle-shaped and plate-shaped crystals are found
 - Needle-shaped crystals are formed from cholesteryl ester crystallization
 - Plate-shaped crystals are formed from crystallization of free cholesterol

Acknowledgement

University of Hawaii

JABSOM

- Svenja Meiler, PhD
- Yvonne Baumer, PhD
- Sara McCurdy, PhD
- Emma Toulmin, PhD
- Martin Hess, PhD
- Martin Alcala, PhD
- Kosal Seng, MD
- Eric Collier
- Monica Montgomery

<u>Collaborators</u>

InnoMedica Holdings Ag, Bern

- Noboru Yamazaki, PhD
- Pascal Helbherr, PhD

University of Amsterdam

- Esther Lutgens, PhD Regulus Therapeutics
- Christy Esau, PhD

University of California-San Diego

- Mark Ginsberg, MD
- Per Fogelstrand, PhD NIH/NHLBI
- Howard Kruth, PhD

MAHALO

Cholesterol crystals in human and mouse atherosclerotic plaque

Subendothelial CC deposition in Idlr^{-/-} mouse aorta

F/R restores the barrier dysfunction caused by CC

Forskolin/rolipram are well known cAMP-enhancing agents

F/R treatment reduces CC formation in Idlr-/- mice

Characterization of F/R-containing liposome

Binding of F/R-liposome to endothelium

Effects of F/R liposome administration in vivo

F/R liposome treatment in HFD-fed apoE-/- mice

Summary

- F/R effectively improves the endothelial barrier function compromised by CC
- Short-term F/R treatment in HAoEC and in *Idlr-/-* mice resulted in reduced CC formation
- F/R-containing liposomes tagged with sialyl lewis x effectively target the inflamed endothelium
- *ApoE-/-* mice treated with F/R liposomes for 6 weeks displayed significant reduction in the extent of atherosclerosis

Risk Factors

Stages of Atherosclerosis

(Adapted from Libby et al., Nature, 2011)

Cardiovascular Diseases (CVD)

- CVD and stroke are top causes of death in the world – 35% of total
- \$863 billion in annual global economic burden
- 17% of US national healthcare costs

http://www.who.int/mediacentre/factsheets/fs310/en/

Vascular endothelium modification in atherosclerosis

Atherosclerosis Timeline

Subendothelial CC deposition in Idlr^{-/-} mouse aorta No HFD

Subendothelial CC deposition in Idlr^{-/-} mouse aorta 1 week HFD

Atherosclerosis is an arterial disease of chronic inflammation and hyperlipidemia

- Intimal thickening that progresses with time
- Mononuclear cell infiltrate consisting of monocytederived macrophages is very prominent during fatty streak formation
- The intimal macrophages and smooth muscle cells are cholesterol loaded
- T lymphocytes, dendritic cells, natural killer cells and mast cells accumulate during later stages
- The lesion contains cholesterol crystals, necrotic core, fibrous cap (collagen fibers, extracellular matrix)

Cholesterol crystals are produced and secreted exclusively by aortic endothelial cells upon LDL treatment

Smaller Lipoprotein Particles can Diffuse Through the Endothelial Layer

