LM strategy from MITO registry

Ogaki Municipal Hospital Kensuke Takagi

Agenda

- **□**Introduction
- **□MITO** Registry
- □ Left Main PCI strategy

Agenda

- **□** Introduction
- **□MITO** Registry
- □ Left Main PCI strategy

Introduction: LMT-PCI

Non optimal strategy is associated with increased risk of Cardiac death.

Perfect

JACC: Cardiovascular Interventions, 2016, 2086–2093

Most of LM bifurcation is not strongly recommended.

ESC2018, JC \$2010, ACC/AHA2017

vs. CABG

Guideline

LITA-LAD patency is more than 95% in 10-years.

Ann Thorac Surg. 2005 Feb;79(2):544-51;

Introduction: LCx

Most of ISR located in LCx ostium.

Achilles

Takagi et al. Circ Cardiovasc Interv. 2012;109:1244-1249.

Ojeda, et al. JACC Interv 2014

Most of bifurcation strategy is not simple.

Benign

Complicated

Stenosis of LCx had a small impact on long-term mortality.

Takagi et.al Catheter Cardiovasc Interv. 2013 Mitomo et al. Int J Cardiol. 2017 Oct 15;245:77-82. Ojeda, et al. JACC Interv 2014

Introduction: Territory of LCx

- ✓ Balloon Size 3.5mm≥: 10.4% (n-579)
- √ Vessel diameter 3.0mm≥: 15.4% (n-862)
- √ Vessel diameter 3.0mm > & TBL: 9.0%(n-862)

Mito Registry

Eur. J. Anat. 22 (4): 355-365 (2018)

Agenda

□Introduction

□MITO Registry

□ Left Main PCI strategy

MITO and New-Tokyo Registry

#9 LM Optimal stenting #10 OCT: mechanism of ISR

#8 Rota

OCT: effectiveness in LM

Milan n=373

2002 April

New-Tokyo n = 6562005 April

Catheter

Fujino.Y

MITO LM Registry n=1029 patients

#1 LM-ISR

#2 LM MB restenosis

#3 Trifurcation

RCA-CTO

#4 LM-LCx stenting

Ostial

#5 Renal dysfunction

Gender

#6 1-stent vs. 2-stent

#7 Mini vs. cullote

TAP

Cross-over with KBT

1st DES N = 765

2nd DES

264

Kawamoto.T Watanabe.Y

2018/12/07

JCR in Busan

Baseline Angiographic Characteristics in UDLM Patients According to Stent Strategy

Patients: n (%)	All patients (n=474)	1-Stent Strategy (n=280)	2-Stent Strategy (n=194)	p-value
LM+ 3VD	191 (40.3)	98 (35.0)	93 (47.9)	0.006
Stenosis of LCx >75%	171 (36.1)	67 (23.9)	104 (53.6)	0.001
Stenosis Length of LCx >10mm	94 (19.8)	36 (12.9)	58 (29.9)	0.001
True-Bifurcation (Medina 111, 101, 011)	292 (61.6)	133 (47.5) 159 (82.0)		0.001
IABP	71 (15.0)	27 (9.6)	44 (22.7)	0.001
Angiographic follow-up	416 (87.8)	244 (87.1) 172 (88.7)		0.67

#1 ISR located in ostial LCx following LM-PCI

Takagi et al. Circ Cardiovasc Interv. 2012;109:1244-1249.

Mito registry in 1st DES

POBA vs. DES

Supportive paper

Ojeda et al. JACC Caridovasc Interv 2014

KIM et al. JACC Cardiovasc Interv. 2012 Jul;5(7):708-17

937 Distal LM from MITO registry

Cumulative survival free from Cardiac death

#2 LM-LAD-ISR has a impact on long-term mortality Takagi et.al Catheter Cardiovasc Interv. 2013 Sep 2

Predictors of LMMB-ISR

	Univariable HR (CI)	P Value	Coxadjusted HR (CI)	P Value
	(01)			value
Calcification	2.114 (1.085-4.121)	0.03	2.284 (1.165-4.475)	0.02
True-bifurcation	2.764 (1.344-5.668)	0.01	2.331 (1.117-4.862)	0.02
IDDM	2.742 (1.234-6.092)	0.01	2.259 (1.007-5.068)	0.05
Post MLD	0.568 (0.346-0.932)	0.03	0.611 (0.364-1.026)	0.06
Post dilatation	0.43 (0.23-0.81)	0.01	0.55 (0.28-1.07)	0.08
Full cover	0.41 (0.24-0.71)	0.001	0.61 (0.34-1.09)	0.09
IABP	2.115 (1.126-3.971)	0.02		
3 VD	1.750 (1.015-3.016)	0.04		
Dialysis	2.760 (0.993-7.670)	0.05		
2-stent strategy	1.651 (0.957-2.848)	0.07		

#2/#9 Full cover + POT reduce MB-ISR

Takagi et.al Catheter Cardiovasc Interv. 2013 Sep 2 Cardiovasc Revasc Med. 2016 Sep 4

Not necessary in case of IVUS showing > 30% stenosis and long ostial LM

#5/#8 HD and calcified LM are associated with poor putcomes...

Yabushita, Takagi et.al Circ J. 2014;78(8):1867-72 Takagi et al. Int J Cardiol. 2014 Dec 20;177(3):1131-3.

New-Tokyo and MITO registry in HD

Yabushita, Takagi et.al Circ J. 2014;78(8):1867-72 Takagi et al. Int J Cardiol. 2014 Dec 20;177(3):1131-3.

ROTATE registry 86 severe calcified UDLM patients

definite/probable ST 3.9% in LM vs. 0.8% in non-LM

Lelasi, Kawamoto et al. Am J Cardiol. 2017 May 1;119(9):1331-1337.

If we focus on TLR for restenosis at the ostium of the stented-branch...

Oviedo C, et al. Circ Cardiovasc Interv 2010

#6 Cardiac death was quite low in 2-SS using Second-DES. However, LCx-ISR was still high.

- Device : First DES in 75%
- Procedure:KBT in 95%, POT in 65%, IVUS in 60%
- Technique:
 Crush series in 51%
- Patient Background:
 High SYNTAX in 30%, ESRD in 7%

The difference between 1-SS and 2-SS in the LM-PCI is associated with the high development of SB restenosis in 2-SS, which had little impact on long-term mortality.

DK crush is better than 1-SS in TBLM

LM patients usually categorized to mode-high bleeding risk

NATSUAKI et al.J Am Heart Assoc. 2018 May 22;7(11)

At least 72.6% of the LM patients belongs to intermediate and high bleeding risk group by Paris Score.

2018/12/07 JCR in Busan Takggi et al. EBC 2017.

Unique vessel reaction at carina side after 2-stent LM PCI

Usually, there is little plaque accumulation at carina side, however there is NIH accumulation at carina side of LCX proximal after 2 stent technique. Why does it happen?

Fujino, Y., Nakamura, S, et al. Int J Cardiol. 2016:219:285-92.

Suboptimal 2-SS increased risk of LSS

Courtesy of Dr. Y.Fujino

Favorable Culotte Unfavorable Culotte LAD LAD LCX LCX LCX ostium LCX ostium Without With jailed jailed struts struts **LMCA** LAD **LMCA** LAD LCX

Uncovered and Malapposed strut in LCx increased cardiac mortality

Failed lesions showed significantly greater prevalence of malapposition >20% of struts/section (65% vs. 13%, P < 0.01), stent struts crossing an ostial side branch >30% of the LCx (48% vs. 13%, P < 0.01) and uncovered struts > 30% (57% vs. 18%, P = 0.03).

Mori et al. International Journal of Cardiology 263 (2018) 9–16

Residual stent Strut led to Low Share stress in Carina

Without stent

High Shear Stress

Single stent KBT>

Single stent <post KBT>

Courtesy of Dr. Y.Fujino

Low Shear Stress

ICR in Busan

2018/12/07

Watanabe et al. Under review

Kaplan-Meier curve of TLR for LCXos according to KBT

#

Agenda

□Introduction

□MITO Registry

□ Left Main PCI strategy

The number of PCI in Ogaki Municipal Hospital

LM-PCI 76y.o Male EF30%

Rota burr 2.0mm

LM-PCI Final Angiography

Full cover, EES, POT, KBT, 3DOCT, re-POT

LM-PCI² 83y.o male Severe AS

LAD FFR: 0.66

Rota burr 2.0mm

LCx: Rota, CB, DCB

LM-PCI^② Final Angiography

Full cover, EES, POT, KBT, 3DOCT, re-POT

LM-PCI[®] Suboptimal Case

Full cover, EES, POT, KBT, 3DOCT, re-POT

LM-PCI Suboptimal Case

Full cover, EES, POT, KBT, 3DOCT, re-POT

Take home message

- ✓ Current Guideline does not support LM-PCI for complex LM. Therefore, optimal result should be achieved in all the LM patients.
- ✓ The indication should be carefully considered using physiological assessment. Furthermore, optimal medication and CABG is sometimes good alternative option.
- ✓ Single stent is still gold standard in LM-PCI. Using imaging modality, POT, Full coverage and KBI could guarantee the quality of LM-PCI.